Volume 9: Index

January 9, 2021
Contents

VOLUME 1

Chapter 1. What is GROMOS 1-1
Chapter 2. The GROMOS force fields 1-3
Chapter 3. GROMOS functionalities and documentation 1-5
Chapter 4. Examples of application of GROMOS 1-7
 4.1. Analysis: Calculation of dielectric permittivity and relaxation time 1-7
 4.2. Simulation of polypeptide folding using a polarisable solvent 1-8
 4.3. Properties of coarse-grained models for solvents: H₂O and co-solvents 1-9
 4.4. Enhancing the configurational sampling of ions 1-9
 4.5. Calculation of protein-ligand binding free enthalpies 1-9
 4.6. Structure refinement based on NMR data 1-11
 4.7. Water configurations and mobility in the pore of a membrane protein 1-11
 4.8. Computer time required for MD simulation 1-11
Chapter 5. Limitations of GROMOS 1-17

VOLUME 2

Chapter 1. Introduction 2-1
Chapter 2. Basic choices in the definition of a molecular model 2-3
 2.1. Introduction 2-3
 2.2. Choice of degrees of freedom 2-4
 2.3. Choice of the description of the interaction 2-5
 2.4. Choice of method for configuration generation 2-6
 2.5. Choice of the boundary conditions 2-8
Chapter 3. Scope of the GROMOS package 2-9
 3.1. Introduction 2-9
 3.2. Choice of the degrees of freedom 2-9
 3.3. Choice of the description of the interaction 2-9
 3.3.1. Charge groups, searching neighbours 2-10
 3.3.2. Twin-range method for long-range interactions 2-11
 3.3.3. Pairlist construction 2-11
 3.4. Choice of the method for the configuration generation 2-12
 3.5. Choice of the boundary conditions 2-12
Chapter 4. Spatial boundary conditions 2-13
 4.1. Introduction 2-13
 4.2. Vacuum boundary conditions (VBC) 2-13
 4.3. Fixed boundary conditions (FBC) 2-14
 4.4. Periodic boundary conditions (PBC) 2-15
 4.4.1. Triclinic computational box under PBC 2-16
Chapter 9. Biasing energy functions
9.13. Local elevation biasing 2-88
9.13.2. Umbrella sampling 2-89
9.13.3. Local elevation umbrella sampling (LEUS) 2-89
9.13.4. Ball and stick LEUS 2-90

Chapter 10. Constraints
10.1. Introduction 2-95
10.2. Position Constraints 2-96
10.3. Constraints using the SHAKE method and its derivatives 2-96
10.3.1. Constraints using the SHAKE method 2-96
10.3.2. Constraints using the SETTLE method 2-99
10.3.3. Constraints using the LINCS method 2-100
10.3.4. Constraints using the M-SHAKE method 2-101
10.3.5. Constraints using the FLEXSHAKE method 2-102
10.3.6. Constrained positions 2-102
10.3.7. Constrained velocities 2-102
10.3.8. Constrained forces 2-103
10.4. Bond-length constraints in the solute 2-103
10.5. Bond-length and bond-angle constraints in solvent 2-104
10.6. Dihedral-angle constraints 2-104
10.7. Translational and rotational constraints 2-107

Chapter 11. Energy Minimization
11.1. Introduction 2-111
11.2. Steepest-descent minimization 2-112
11.3. Conjugate-gradient minimization 2-112
11.4. Steepest-descent minimization with constraints (SHAKE) 2-114
11.5. Conjugate-gradients minimization with constraints (SHAKE) 2-115

Chapter 12. Molecular Dynamics
12.1. Introduction 2-119
12.2. Temperature scaling 2-120
12.2.1. Temperature calculation in MD++ 2-120
12.2.2. Thermostat algorithms in MD++ 2-121
12.2.3. Use of temperature groups, sets of degrees of freedom and thermostats 2-124
12.3. Number of degrees of freedom 2-125
12.4. Calculation of the virial 2-126
12.5. Pressure scaling 2-128
12.6. MD algorithms 2-130
12.7. Initialization, equilibration and sampling 2-131

Chapter 13. Stochastic Dynamics
13.1. Introduction 2-137
13.2. Leap-frog SD algorithm 2-137
13.3. Choice of atomic friction coefficient 2-141

Chapter 14. Free Energy Determination
14.1. Introduction 2-143
14.2. Parameterization of the Hamiltonian 2-144
14.2.1. Covalent bond forces 2-145
14.2.2. Covalent bond forces (soft potential energy function) 2-147
14.2.3. Covalent bond-angle forces 2-148
14.2.4. Covalent bond-angle forces (soft potential energy function) 2-151
14.2.5. Improper dihedral-angle forces 2-151
14.2.6. Improper dihedral-angle forces (soft potential energy function) 2-153
14.2.7. Dihedral-angle torsion forces 2-154
14.2.8. Non-bonded forces 2-156
14.2.9. Polarization 2-158
14.2.10. Perturbed atom-atom distance restraints 2-161
14.2.11. Perturbed dihedral angle restraints 2-164
14.2.12. Perturbed distance-field distance restraints 2-165
14.3. Constraints 2-166
14.4. Assigning different λ-dependences for specific groups of atoms 2-167
14.5. Choice of pathway and states A and B 2-170
14.6. Thermodynamic integration 2-172
14.7. Thermodynamic perturbation and extrapolation 2-173
14.8. Umbrella sampling 2-174
14.9. Enveloping Distribution Sampling 2-176
14.9.1. EDS with smoothness parameter s 2-176
14.9.2. Accelerated EDS 2-178
14.9.3. Twin-system EDS 2-180
14.9.4. Configurational EDS 2-181

Chapter 15. QM/MM simulation 2-185
15.1. Introduction 2-185
15.2. Hamiltonian 2-185
15.3. Initialization, simulation and analysis 2-187

Chapter 16. Replica Exchange (RE) Molecular Dynamics 2-189
16.1. Introduction 2-189
16.2. Temperature replica exchange MD 2-190
16.2.1. Simulation checks 2-191
16.2.2. Factors determining the efficiency 2-192
16.3. Hamiltonian replica exchange MD 2-192
16.4. Initialization, simulation and analysis 2-192
16.4.1. Set up of a RE simulation 2-192
16.4.2. Analysis of a RE trajectory 2-193

Chapter 17. Derivatives of the force-field terms 2-195
17.1. Bond stretching force-field term 2-195
17.2. Bond-angle bending force-field term 2-195
17.3. Improper dihedral-angle bending force-field term 2-196
17.4. Proper dihedral-angle torsion force-field term 2-196
17.5. LJ interaction terms 2-197
17.6. Electrostatic interaction terms: Coulomb plus reactive field 2-197
17.7. Electrostatic interaction terms: lattice sum 2-197

Chapter 18. Appendices 2-199

VOLUME 3

Chapter 1. Introduction 3-1
1.1. GROMOS force fields 3-1
1.2. Development of the GROMOS force field 3-2

Chapter 2. Physical forces: GROMOS force field 3-5
2.1. Introduction 3-5
2.2. Bond stretching force-field terms 3-5
2.3. Bond-angle bending force-field terms 3-6
2.4. Improper dihedral-angle bending force-field term 3-6
2.5. Proper dihedral-angle torsion force-field term 3-7
2.6. Non-bonded interactions 3-9
2.6.1. van der Waals parameters 3-9
2.6.2. Atomic charges and charge groups

Chapter 3. GROMOS interaction function parameters

Chapter 4. GROMOS molecular topology building blocks

4.1. Introduction
4.2. Definition of molecular topology building block pictures
4.3. \(\alpha\)-amino acids and analogues
4.4. \(\beta\)-amino acids
4.5. Nucleotides
4.6. Carbohydrates
4.7. Other molecules

Chapter 5. GROMOS standard configurations

5.1. Water
5.2. Chloroform
5.3. DMSO
5.4. Methanol
5.5. Carbontetrachloride

VOLUME 4

Chapter 1. Introduction

Chapter 2. Block structure and title record of GROMOS files

Chapter 3. Topological information

3.1. Introduction
3.2. Molecular topology
3.3. Perturbation molecular topology
3.4. Atom-atom and distance-field distance restraints
3.5. Dihedral-angle restraints or constraints
3.6. \(3J\)-coupling constant restraints
3.7. \(S^2\)-order parameter restraining
3.8. Local-elevation coordinates
3.9. Local elevation umbrella sampling database file
3.10. Atomic friction coefficients
3.11. Position restraining or constraining atom specification list
3.12. B-factor restraining
3.13. Backwards compatibility with GROMOS96

Chapter 4. Configurational information

4.1. Introduction
4.2. Atomic coordinates
4.3. Atomic velocities
4.4. Atomic forces
4.5. Atomic stochastic integrals
4.6. Periodic box
4.7. Nose-Hoover chain thermostat variables
4.8. Roto-translational constraints reference variables
4.9. Perturbation data
4.10. Atom-atom distance restraints
4.11. \(3J\)-coupling constant restraints
4.12. \(S^2\)-order parameter restraints
4.13. Crystallographic restraints
4.14. Local-elevation data
4.15. Ball and stick local-elevation data
4.16. Time or step number data

9-V
4.17. Energies, pressure, volume and free-energy data 4-49
4.18. Atomic B-factors and positional fluctuations 4-54
4.19. Accelerated EDS parameter search data 4-55
4.20. Backwards compatibility with GROMOS96 4-56

Chapter 5. Molecular topology building blocks 4-57
 5.1. Introduction 4-57
 5.2. Separate molecules 4-57
 5.3. Linking of building blocks 4-65
 5.4. Other building blocks 4-66
 5.5. End groups 4-67
 5.6. Contents of the MTB file 4-67

Chapter 6. Interaction function parameters 4-69
 6.1. Introduction 4-69
 6.2. Mass atom types 4-69
 6.3. Covalent bond-stretching interaction parameters 4-70
 6.4. Covalent bond-angle bending interaction parameters 4-70
 6.5. Improper dihedral-angle interaction parameters 4-70
 6.6. Dihedral-angle torsional interaction parameters 4-71
 6.7. Van der Waals interaction parameters and integer atom codes 4-71
 6.8. Atomic charges and charge group codes 4-73
 6.9. Excluded neighbours 4-73
 6.10. Contents of the IFP file 4-73

Chapter 7. Library files for GROMOS++ 4-75
 7.1. Introduction 4-75
 7.2. Interaction function parameter renumbering 4-75
 7.3. Atomic naming conventions 4-76
 7.4. Definition of file-names and joblists 4-77
 7.5. Energy trajectory block definition 4-79
 7.6. Hydrogen-bond donors and acceptors 4-79
 7.7. Crystallographic transformations 4-80
 7.8. NOE analysis 4-81
 7.9. SASA implicit solvent model 4-83
 7.10. DISICL angle, region and segment definitions 4-84

Chapter 8. Input file for MD++ 4-87

Chapter 9. Output files for MD++ 4-107

Chapter 10. Files accessed by MD++ for reading or writing 4-109

Chapter 11. Other non-GROMOS formats 4-115

Chapter 12. List of GROMOS blocknames 4-117

Chapter 13. Recommendations for standard input and output file names 4-121

VOLUME 5

Chapter 1. Introduction 5-1
 1.1. Nomenclature of GROMOS files 5-1
 1.2. Common arguments in GROMOS++ 5-1
 1.3. Atom, property and vector specifiers in GROMOS++ 5-2
 1.3.1. Atom specifiers 5-2
 1.3.2. Vector specifiers 5-4
 1.3.3. Property specifiers 5-4
<table>
<thead>
<tr>
<th>Chapter 2. Setup of simulations (preprocessing)</th>
<th>5-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. bin_box (GROMOS++ program)</td>
<td>5-7</td>
</tr>
<tr>
<td>2.2. build_box (GROMOS++ program)</td>
<td>5-8</td>
</tr>
<tr>
<td>2.3. check_box (GROMOS++ program)</td>
<td>5-9</td>
</tr>
<tr>
<td>2.4. check_top (GROMOS++ program)</td>
<td>5-10</td>
</tr>
<tr>
<td>2.5. com_top (GROMOS++ program)</td>
<td>5-12</td>
</tr>
<tr>
<td>2.6. cont_top (GROMOS++ program)</td>
<td>5-13</td>
</tr>
<tr>
<td>2.7. copy_box (GROMOS++ program)</td>
<td>5-14</td>
</tr>
<tr>
<td>2.8. cry (GROMOS++ program)</td>
<td>5-15</td>
</tr>
<tr>
<td>2.9. duplicate (GROMOS++ program)</td>
<td>5-16</td>
</tr>
<tr>
<td>2.10. explode (GROMOS++ program)</td>
<td>5-17</td>
</tr>
<tr>
<td>2.11. gca (GROMOS++ program)</td>
<td>5-18</td>
</tr>
<tr>
<td>2.12. gch (GROMOS++ program)</td>
<td>5-19</td>
</tr>
<tr>
<td>2.13. ion (GROMOS++ program)</td>
<td>5-21</td>
</tr>
<tr>
<td>2.14. link_top (GROMOS++ program)</td>
<td>5-22</td>
</tr>
<tr>
<td>2.15. make_pt_top (GROMOS++ program)</td>
<td>5-24</td>
</tr>
<tr>
<td>2.16. make_sasa_top (GROMOS++ program)</td>
<td>5-25</td>
</tr>
<tr>
<td>2.17. make_top (GROMOS++ program)</td>
<td>5-26</td>
</tr>
<tr>
<td>2.18. mk_script (GROMOS++ program)</td>
<td>5-27</td>
</tr>
<tr>
<td>2.19. pdb2g96 (GROMOS++ program)</td>
<td>5-29</td>
</tr>
<tr>
<td>2.20. pert_top (GROMOS++ program)</td>
<td>5-30</td>
</tr>
<tr>
<td>2.21. prep Edwards (GROMOS++ program)</td>
<td>5-31</td>
</tr>
<tr>
<td>2.22. prep_xray (GROMOS++ program)</td>
<td>5-32</td>
</tr>
<tr>
<td>2.23. prep_xray_le (GROMOS++ program)</td>
<td>5-33</td>
</tr>
<tr>
<td>2.24. pt_top (GROMOS++ program)</td>
<td>5-34</td>
</tr>
<tr>
<td>2.25. ran_box (GROMOS++ program)</td>
<td>5-35</td>
</tr>
<tr>
<td>2.26. ran_solvation (GROMOS++ program)</td>
<td>5-36</td>
</tr>
<tr>
<td>2.27. red_top (GROMOS++ program)</td>
<td>5-37</td>
</tr>
<tr>
<td>2.28. sim_box (GROMOS++ program)</td>
<td>5-38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3. Minimizers and simulators</th>
<th>5-39</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. md (MD++ program)</td>
<td>5-40</td>
</tr>
<tr>
<td>3.2. repex_mpi (MD++ program)</td>
<td>5-41</td>
</tr>
<tr>
<td>3.3. eds_2box (MD++ program)</td>
<td>5-42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4. Analysis of trajectories (postprocessing)</th>
<th>5-43</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. bar (GROMOS++ program)</td>
<td>5-43</td>
</tr>
<tr>
<td>4.2. bilayer_dist (GROMOS++ program)</td>
<td>5-45</td>
</tr>
<tr>
<td>4.3. bilayer_oparam (GROMOS++ program)</td>
<td>5-46</td>
</tr>
<tr>
<td>4.4. cluster (GROMOS++ program)</td>
<td>5-47</td>
</tr>
<tr>
<td>4.5. cog (GROMOS++ program)</td>
<td>5-48</td>
</tr>
<tr>
<td>4.6. cos_dipole (GROMOS++ program)</td>
<td>5-49</td>
</tr>
<tr>
<td>4.7. cos_nipole (GROMOS++ program)</td>
<td>5-50</td>
</tr>
<tr>
<td>4.8. cry_rms (GROMOS++ program)</td>
<td>5-51</td>
</tr>
<tr>
<td>4.9. dfgrid (GROMOS++ program)</td>
<td>5-52</td>
</tr>
<tr>
<td>4.10. dfmult (GROMOS++ program)</td>
<td>5-54</td>
</tr>
<tr>
<td>4.11. disic1 (GROMOS++ program)</td>
<td>5-55</td>
</tr>
<tr>
<td>4.12. dg_ener (GROMOS++ program)</td>
<td>5-56</td>
</tr>
<tr>
<td>4.13. dGslv_pbsh (GROMOS++ program)</td>
<td>5-57</td>
</tr>
<tr>
<td>4.14. diffus (GROMOS++ program)</td>
<td>5-59</td>
</tr>
<tr>
<td>4.15. dipole (GROMOS++ program)</td>
<td>5-60</td>
</tr>
<tr>
<td>4.16. ditrans (GROMOS++ program)</td>
<td>5-61</td>
</tr>
<tr>
<td>4.17. dssp (GROMOS++ program)</td>
<td>5-62</td>
</tr>
<tr>
<td>4.18. eds_update1 (GROMOS++ program)</td>
<td>5-63</td>
</tr>
<tr>
<td>4.19. eds_update2 (GROMOS++ program)</td>
<td>5-64</td>
</tr>
<tr>
<td>4.20. edyn (GROMOS++ program)</td>
<td>5-65</td>
</tr>
<tr>
<td>4.21. ene_ana (GROMOS++ program)</td>
<td>5-66</td>
</tr>
</tbody>
</table>
4.22. ener (GROMOS++ program) 5-67
4.23. epath (GROMOS++ program) 5-69
4.24. eps_field (GROMOS++ program) 5-70
4.25. epsilon (GROMOS++ program) 5-71
4.26. espmap (GROMOS++ program) 5-73
4.27. ext_ti_ana (GROMOS++ program) 5-74
4.28. ext_ti_merge (GROMOS++ program) 5-77
4.29. filter (GROMOS++ program) 5-78
4.30. follow (GROMOS++ program) 5-79
4.31. gathtraj (GROMOS++ program) 5-80
4.32. hbond (GROMOS++ program) 5-81
4.33. int_ener (GROMOS++ program) 5-82
4.34. iondens (GROMOS++ program) 5-83
4.35. jepot (GROMOS++ program) 5-84
4.36. jval (GROMOS++ program) 5-85
4.37. m_widom (GROMOS++ program) 5-86
4.38. matrix_overlap (GROMOS++ program) 5-87
4.39. mdf (GROMOS++ program) 5-88
4.40. nhoparam (GROMOS++ program) 5-89
4.41. noe (GROMOS++ program) 5-90
4.42. post_noe (GROMOS++ program) 5-91
4.43. postcluster (GROMOS++ program) 5-92
4.44. predict_noe (GROMOS++ program) 5-93
4.45. prep_noe (GROMOS++ program) 5-94
4.46. r_factor (GROMOS++ program) 5-96
4.47. r_real_factor (GROMOS++ program) 5-97
4.48. rdf (GROMOS++ program) 5-98
4.49. rep_ana (GROMOS++ program) 5-99
4.50. rep_reweight (GROMOS++ program) 5-100
4.51. reweight (GROMOS++ program) 5-101
4.52. rgyr (GROMOS++ program) 5-102
4.53. rmsd (GROMOS++ program) 5-103
4.54. rmsdmat (GROMOS++ program) 5-104
4.55. rmsf (GROMOS++ program) 5-105
4.56. sasa (GROMOS++ program) 5-106
4.57. sasa_hassel (GROMOS++ program) 5-107
4.58. solute_entropy (GROMOS++ program) 5-108
4.59. structure_factor (GROMOS++ program) 5-109
4.60. temperature (GROMOS++ program) 5-110
4.61. tcf (GROMOS++ program) 5-111
4.62. trs_ana (GROMOS++ program) 5-112
4.63. tser (GROMOS++ program) 5-113
4.64. tstrip (GROMOS++ program) 5-114
4.65. visco (GROMOS++ program) 5-115
4.66. xrayts (GROMOS++ program) 5-116

Chapter 5. Miscellaneous 5-117
5.1. atominfo (GROMOS++ program) 5-117
5.2. close_pair (GROMOS++ program) 5-118
5.3. frameout (GROMOS++ program) 5-119
5.4. inbox (GROMOS++ program) 5-120
5.5. pairlist (GROMOS++ program) 5-121
5.6. shake_analysis (GROMOS++ program) 5-122
5.7. unify_box (GROMOS++ program) 5-123
5.8. rot_rel (GROMOS++ program) 5-124
5.9. VMD plugin (GROMOS++ program) 5-125
Chapter 1. Outline of the GROMOS Code

1.1. MD++ outline

1.1.1. Efficiency

1.1.2. Debugging information

1.1.3. In-code documentation

1.2. GROMOS++ outline

1.2.1. GROMOS++ source code and in-code documentation

Chapter 2. Error Messages

Chapter 3. Machine Compatibility

Chapter 4. Numerical and Mathematical Functions

4.1. Numerical functions

4.2. Mathematical functions

4.2.1. MD++

4.2.2. GROMOS++

Chapter 5. Nomenclature

Chapter 6. Units

Chapter 7. Charge Group Codes

Chapter 8. Pair List Generation

8.1. Double loop pair list

8.2. Grid pair list (Heinz and Hünenberger)

8.3. Grid pair list with expanded coordinates

Chapter 9. Boundary Conditions and Periodicity

Chapter 10. Generation of Cartesian Coordinates from Internal Coordinates

Chapter 11. Generation of Hydrogen Atom Coordinates

Chapter 12. Generation of Atomic Velocities

Chapter 13. What to Do when SHAKE Fails

Chapter 14. Removal of Centre of Mass Motion

Chapter 15. Saving Trajectories

Chapter 16. Performing a Translational Superposition and a Rotational Least-Squares Fit

Chapter 17. Transformation between Coordinates

17.1. Cartesian and Oblique Contravariant Crystallographic Coordinates

Chapter 18. Distributions, Averages and Root-Mean-Square Fluctuations

Chapter 19. Dihedral-Angle Conventions, Names and Transitions

Chapter 20. Definition of Hydrogen Bonds

Chapter 21. Time Correlation Functions and Spectral Densities

21.1. Use of fast Fourier transform (FFT) routines in GROMOS

Chapter 22. Coarse Graining in GROMOS
Chapter 23. Parallelisation in GROMOS
 23.1. Parallelisation in MD++
 23.2. Parallelisation in GROMOS++

 24.1. Solvent innerloops in MD++

Chapter 25. Replica Exchange Simulation

VOLUME 7

Chapter 1. Introduction
 1.1. Simulation using GROMOS
 1.1.1. Units
 1.1.2. File and software organisation
 1.1.3. Summary of the exercise
 1.1.4. Calling the GROMOS programs
 1.2. Practical information

Chapter 2. A practical exercise
 2.1. Building a topology
 2.1.1. Creating the topology for the penta-peptide
 2.2. Generating atom Cartesian coordinates for the solute, solvent and counter ions
 2.2.1. Generating atomic Cartesian coordinates for the linear charged penta-peptide
 2.2.2. Energy minimisation of the penta-peptide
 2.2.3. Solvating the penta-peptide in a water box
 2.2.4. Adding counter ions to the simulation box
 2.3. Set-up and production simulation of the penta-peptide
 2.3.1. Thermalisation and equilibration
 2.3.2. Molecular dynamics sampling simulation
 2.4. Analysis of the penta-peptide trajectories
 2.4.1. Analysis of the energy trajectory
 2.4.2. Analysis of the coordinate trajectory
 2.5. Enhancing sampling using Local Elevation
 2.6. Free energy calculations
 2.6.1. Thermodynamic integration
 2.6.2. Enveloping distribution sampling
 2.7. Constructing a new building block

VOLUME 8

Chapter 1. System requirements

Chapter 2. Installation of required libraries
 2.1. GNU scientific library
 2.1.1. Installation from source
 2.2. FFTW 3
 2.2.1. Installation from source

Chapter 3. Installation of GROMOS
 3.1. Installing MD++
 3.1.1. Debug version of MD++
 3.1.2. Parallel version of MD++
 3.1.3. Compiling MD++ using the CUDA solvent-solvent interaction evaluation acceleration
 3.1.4. What is installed
 3.2. Installing GROMOS++
 3.2.1. Generating the documentation
3.2.2. Adding it to the path 8-7
3.2.3. What is installed 8-7
Index

MD
 tutorial, 7-17
GROMOS++
 doxygen, 6-5
 arguments, 5-1
 code outline, 6-4
 file names, 5-1
 flags, 5-1
 gathering methods, 6-25
 gmath, 6-12
 matrices, 6-12
 namespaces, 6-5
 nomenclature of input/output files, 5-1
 periodic boundary conditions, 6-25
 source code, 6-5
 vectors, 6-12
GROMOS
 error messages, 6-7
MD++
 doxygen, 6-3
 code outline, 6-1
 compiling, 6-2
 debugging, 6-3
 efficiency, 6-2
 libraries, 6-9
 math, 6-11
 matrices, 6-11
 namespaces, 6-1
 random number generators, 6-11
 vectors, 6-11
doctxygen
 GROMOS++, 6-5
 MD++, 6-3
3J analysis
 tutorial, 7-34
algorithm
 MD, 6-1
AtomSpecifier, 6-5
AtomSpecifiers, 6-15
C++, 6-9
charge groups, 6-21
 periodic boundary conditions, 6-25
checkTOP
 tutorial, 7-6
code outline
 MD++, 6-1
comTOP
 tutorial, 7-6
common arguments
 GROMOS++, 5-1
compatibility, 6-9
compiling
MD++, 6-2
cut-off, 6-21
debugging
 MD++, 6-3
 installation, 8-5
documentation
 doxygen, 8-7
documentation, in-code
 GROMOS++, 6-5
 MD++, 6-3
doctxygen
 generation for GROMOS++, 8-7
 generation for MD++, 8-5
equation
 tutorial, 7-19
energy minimisation
 tutorial, 7-8
energy trajectory
 tutorial, 7-19
equilibration
 tutorial, 7-13
error messages
 GROMOS, 6-7
gathering methods
 GROMOS++, 6-25
 periodic boundary conditions, 6-25
gch
 tutorial, 7-7
gmath
 GROMOS++, 6-12
GROMOS++
 installation, 8-6
input file
 tutorial, 7-13
input/output files, GROMOS++
 nomenclature, 5-1
installation
 GROMOS++, 8-6
 MD++, 8-5
parallelization, 8-6
 required libraries, 8-3
ion
 tutorial, 7-12
IUPAC, 6-15
J-value analysis
 tutorial, 7-34
joblist
 tutorial, 7-16
libraries
GROMOS++, 6-9
MD++, 6-9
Local Elevation
introduction, 7-35
peptide, 7-36
machines
compatibility, 6-9
make_top
tutorial, 7-5
math
MD++, 6-11
matrices
GROMOS++, 6-12
MD++, 6-11
MD++
installation, 8-5
mk_script
tutorial, 7-16
MPI
installation, 8-6
NOE analysis
tutorial, 7-32
nomenclature, 6-15
OpenMP
installation in MD++, 8-6
optimization
MD++, 8-5
parallelization
installation, 8-6
PDB
converting to GROMOS, tutorial, 7-7
pdb2g96
tutorial, 7-7
peptide
Local Elevation, 7-36
tutorial, 7-1, 7-5
periodic boundary conditions, 6-25
GROMOS++, 6-25
gathering methods, 6-25
physical constants, 6-17
pressure coupling, 6-25
periodic boundary conditions, 6-25
tutorial, 7-18
program, GROMOS++
atominfo, 5-117
bar, 5-43
bilayer.list, 5-45
bilayer.param, 5-46
bin.box, 5-7
build.box, 5-8
check.box, 5-9
check.top, 5-10
close_pair, 5-118
cluster, 5-47
cog, 5-48
com.top, 5-12
con.top, 5-13
copy.box, 5-14
copy.dipole, 5-49
copy.epsilon, 5-50
cry, 5-15
cry.rms, 5-51
dfgrid, 5-52
dfmut, 5-54
dg ener, 5-56
dGalv.absolv, 5-57
diffus, 5-59
dipole, 5-60
discl, 5-55
ditrans, 5-61
dssp, 5-62
duplicate, 5-16
edu pdate 1, 5-63
update 2, 5-64
edyn, 5-65
ene_ana, 5-66
ener, 5-67
epath, 5-69
epsfield, 5-70
epsilon, 5-71
esmap, 5-73
explode, 5-17
ext_cache, 5-74
extract.merge, 5-77
filter, 5-78
follow, 5-79
frameout, 5-119
gatherraj, 5-80
gca, 5-18
gch, 5-19
hbond, 5-81
inbox, 5-120
intener, 5-82
ion, 5-21
iondens, 5-83
jepot, 5-84
jval, 5-85
link_top, 5-22
widom, 5-86
make.mtop, 5-24
make.sasa.top, 5-25
make.top, 5-26
matrix_overlap, 5-87
mdf, 5-88
mk_script, 5-27
nhoparam, 5-89
noe, 5-90
pairlist, 5-121
pdb2g96, 5-29
peri.top, 5-30
postnoe, 5-91
postcluster, 5-92
predict.noe, 5-93
prewds, 5-31
prew noe, 5-94
prewray, 5-32
prewrayle, 5-33
pt.top, 5-34
r_factor, 5-96
r real_factor, 5-97
ran_box, 5-35
ran_solvation, 5-36
rdf, 5-98
red_top, 5-37
rep_ana, 5-99
rep_rweight, 5-100
reweight, 5-101
rgyr, 5-102
rmsd, 5-103
rmsdmat, 5-104
rmsf, 5-105
rot.vel, 5-124
sasa, 5-106
random number generators
 MD++, 6-11
rectangular
 periodic boundary conditions, 6-25
reduced
 units, 6-17
reduced units, 6-17, 6-19

setup
 tutorial, 7-13
SI
 units, 6-17
sim.box
 tutorial, 7-11
solvation
 tutorial, 7-11
source code
 GROMOS++, 6-5
specifier
 atom, 5-2
 property, 5-2, 5-4
 vector, 5-2, 5-4
system requirements, 8-1
 hardware, 8-1
 software, 8-1

temperature coupling
 tutorial, 7-14
templates
 MD++, 6-2
theory
 tutorial, 7-1
thermalisation
 tutorial, 7-13
time series, 6-25
 periodic boundary conditions, 6-25
topology
 combining several, 7-6
 tutorial, 7-1, 7-5
triclinic
 periodic boundary conditions, 6-25
truncated octahedral
 periodic boundary conditions, 6-25
tutorial
 introduction, 7-1
 peptide, 7-1, 7-5

units, 6-17